深圳市博达创电子有限公司
服务热线:0755-33124160 33124169 27382958
邮箱:bodachuang@163.com
传真:0755-33803026
地址:深圳市宝安区福永街道凤凰兴业2路207号A栋5楼
网址:www.bodachuang.com
气体传感器的定义
所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。
在电力工业等生产制造领域,也常用气体传感器定量测量烟气中各组分的浓度, 以判断燃烧情况和有害气体的排放量等。在大气环境监测领域,采用气体传感器判定环境污染状况,更是十分普遍。
气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。
气体传感器的分类
从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。
从使用方法上,通常分为便携式气体传感器和固定式气体传感器。
从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。
从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。
按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。
关于不同气体传感器的检测原理、特点和用途:
热学式气体传感器
热学式气体传感器主要有热导式和热化学式两大类。
热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。
热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。
其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。
电化学气体传感器
电化学式气体传感器是利用被测气体的电化学活性,将其电化学氧化或还原,从而分辨气体成分,检测气体浓度的。
电化学传感器拥有很多子类:
1.原电池型气体传感器
这种传感器也被称为加伏尼电池型气体传感器,或燃料电池型气体传感器、自发电池型气体传感器。他们原理与我们日常使用的干电池相同,只不过电池碳锰电极被气体电极替代了。以氧气传感器为例,氧阴极被还原,电子电流表流到阳极,那里铅金属被氧化。因此电流大小与氧气浓度直接相关。这种传感器可以有效检测氧气、二氧化硫、氯气等气体。
2.恒定电位电解池型气体传感器
这种传感器用于检测还原性气体非常有效,它原理与原电池型传感器不一样,电化学反应是电流强制下发生,是一种真正库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器已经成功用于一氧化碳、硫化氢、氢气、氨气、肼等气体检测之中,是目前有毒有害气体检测主流传感器。
3.浓差电池型气体传感器
这种传感器具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳检测仪。
4.极限电流型气体传感器
这是一种测量氧气浓度的传感器,利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。
主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。
主要不足:易受干扰,灵敏度受温度变化影响较大。
氧化锆氧量传感器是电化学式成分分析传感器中发展比较晚的一种,开始出现于20世纪60年代,其工作基理是根据浓差电池原理,通过测量待分析气体和参比气体因氧气浓度差异而导致的浓差电动势,来测量待分析气体中的含氧量。
由于它具有结构简单、工作可靠、灵敏度高、稳定性好、响应速度快、安装使用方便等优点,因此发展较快。常应用于硫酸、空气分离、锅炉燃烧等多组分气体的氧量分析以及熔融金属的含氧测定等。
磁学式气体分析传感器
在磁学式气体分析传感器中,最常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围最宽,是一种十分有效的氧量测量传感器。
常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。
主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。
半导体式气体传感器
根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。
从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。
优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。
不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。
催化燃烧式气体传感器
这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。
由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被成为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。
光离子化气体传感器
通常被称为PID,是一种具有极高灵敏度,用途广泛的检测器,可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。
PID可检测芳香烃类、酮类、醛类、氯代烃类、胺及胺类化合物和不饱和烃类。
红外气体传感器
这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。
优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。
缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。
固体电解质气体传感器
指以固体电解质作为传感材料的气体传感器,常用的固体电解质主要包括:稳定氧化锆、钠离子快导体、质子导体以及一些低价金属的卤化物等。固体电解质气体传感器按照检测信号的特点可分为平衡电位型、混成电位型、限制电流型和短路电流型等。
这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。
超声波气体探测器
这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。
这类探测器通常勇于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。
磁氧分析仪
这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
气相色谱式分析仪
基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。
工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。
根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。
浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。
质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。最常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。
优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。
不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。
目前已有采用计算机控制仪表系统的操作和进行数据运算的气相色谱仪,并可进行组分越限报警,还具有自动检查仪表故障等功能。
随着健康问题越来越得到关注,大气质量、室内空气质量、车内空气质量监控数据成为人们随时随地想看到的数据,气体传感器在这一过程中无疑将扮演更加重要的角色。